

The Impact of Space Weather on Inmarsat Satellite Fleet Operations

Dr Mark Dickinson

Senior Director, Satellite Operations

April 2012, Boulder

Overview of the Inmarsat satellite fleet

Operational impacts from space weather events

- Short term (e.g. single event upsets)
- Longer term (e.g. solar array performance)

Use of space weather observations

Future satellite design considerations and conclusions

Inmarsat's Fleet

- > 10 geostationary mobile communication satellites (L-band user link)
- > 4 x Inmarsat-2 (2 still operational)
 - Launched 1990 to 1992
 - British Aerospace Eurostar 1000 platform
 - Providing voice, fax and maritime safety of life services

> 5 x Inmarsat-3

- Launched 1996 to 1998
- Lockheed Martin A4000 platform
- Spot beam services and navigation

> 3 x Inmarsat-4

- Launched 2005 to 2008
- Astrium Eurostar 3000 platform
- Spot beam services and navigation

> 4 more satellites on-order

- Astrium/TAS Alphasat (2013)
- 3 x Inmarsat-5, Boeing 702s (2013/14)

Satellite Launch Date vs Avg Sunspot Number

Operational Consideration - 1

- In the 170+ yrs of satellite operations we haven't changed a planned operational activity due to <u>predicted or reported</u> space weather activity....why?
 - Naivety, lack of timely/accurate actionable information or good design/operations? Or most likely a combination of these!
-that is not to say we don't see the effects of space weather
 - We see sporadic single event upsets (SEUs) across the fleet. Handled either using on-board redundancy or via ground system detection and recovery
 - Some of our satellites can suffer a SEU which results in a comms payload trip-off. Our ground control system has automation functionality to allow the detection and automatic quick recovery (within ~60 sec) rather than many minutes required for manual recovery.
 - We do see attitude disturbances coincident with periods of high solar activity. We respond reactively rather than pre-empting any possible impact e.g. we have aborted a number of manoeuvres
 - Long term exposure is monitored e.g. UV solar array degradation. Luckily to date degradation is less than predicted.

Operational Consideration - 2

Use Of Space Weather Data

- Our operations teams do subscribe to the NOAA notifications, information and web services
 - Used to provide context within which satellite issues are analysed
 - Post event analysis
- > The lack of real-time actionable data means that we don't change our operational plan.
- What would help?
 - More accurate estimates of arrival time/location/magnitude of particles flux, magnetic orientation etc
 - Predicted effect at various GEO longitudes
- > We also have to be careful of the 'management effect'; a lot of people not related to operations also subscribe to these notifications and can generate significant 'noise'. Also peaks of interest from the media...

Conclusions

- > The Inmarsat satellites are certainly susceptible to space weather conditions, but they have been specifically designed to minimise the operational and service impacts caused by of these types of events.
- With our 170+ yrs of on-orbit operational heritage, which has included 9 satellites through a full solar cycle, Inmarsat has not to date suffered any service outage or permanent satellite component failure directly attributable to a solar or a more general space weather event.
 - This is a good indication that the engineering and oversight of the design of our satellites, some of which dates back over 25 years, has provided the level of protection expected
- Inmarsat doesn't currently use space weather information as a driver to direct operational decisions, but rather for post event analysis
-however, changes in satellite technology may require us to do so in future.

